T2K実験の新型前置ニュートリノ検出器 SuperFGD に 使用する半導体型光検出器 MPPC の性能評価

横浜国立大学 理工学部数物・電子情報系学科 物理工学 EP学籍番号 1764203

永井恒輝

2021年2月12日

概要

T2K 実験は長基線加速器ニュートリノ振動実験である。ニュートリノは標的の原子核と反応した際に放出される荷電粒子をシンチレーター等で検出することにより、間接的に観測される。T2K 実験の前置ニュートリノ検出器 ND280 の Fine-Grained Detectors (FGD)は、大角度に散乱された粒子に対する検出効率が低い、低エネルギーのハドロンに対する検出効率が低い、といった弱点がある。そこで、FGD に代わる新たな光検出器として SuperFGD を開発している。SuperFGD は約 200 万個の一辺の長さが 1cm の立方体型のシンチレーターを直方体型に配置した構造をしている。各キューブには各面に円筒形の穴が開いており、その穴に信号を送るファイバーが通されている。シンチレーション光の検出には、ファイバーの端に接続した半導体型光検出器 Multi-Pixel Photon Counter (MPPC)を用いて行う。本研究では、SuperFGD に用いる MPPC (浜松ホトニクス製 S13360-1325PE) に関する諸特性を計測し、性能評価を行った。

目 次

第1章	ニュートリノ	4
1.1	ニュートリノとは.................................	4
1.2	ニュートリノ振動	4
第2章	T2K 実験	6
2.1	T2K 実験	6
	2.1.1 T2K 実験の概要	6
	2.1.2 ニュートリノビーム	6
	2.1.3 オフアクシス法	7
2.2	前置検出器	7
	2.2.1 INGRID 検出器	8
	2.2.2 ND280 検出器	8
2.3	後置検出器(スーパーカミオカンデ)	10
2.4	SuperFGD	11
	2.4.1 ND280 検出器の問題点	11
	2.4.2 Super FGD とは	11
	2.4.3 構成要素	11
第3章	MPPC (Multi-Pixel Photon Counter)	2
3.1	MPPCとは	12
3.2	構造・動作原理	12
	3.2.1 アバランシェフォトダイオード	12
	3.2.2 構造	13
	3.2.3 検出効率	14
3.3	MPPC の諸特性	15
	3.3.1 降伏電圧	15
	3.3.2 ゲイン	15
	3.3.3 ダークレート	15
	3.3.4 クロストーク	16
	3.3.5 アフターパルス	16
	3.3.6 応答線形性	17

第4章	MPPCの諸特性の測定	18
4.1	本研究の目的	18
4.2	測定方法	18
	4.2.1 測定機器	18
	4.2.2 各特性の測定方法	22
4.3	測定結果・考察	23
	4.3.1 降伏電圧	23
	4.3.2 ゲイン	25
	4.3.3 ダークレート	29
	4.3.4 クロストーク&アフターパルス	33
	4.3.5 オーバー電圧を固定したときのダークレート、アフターパルスの温度依存性	34
	4.3.6 応答線形性	36

第5章 結論

第1章 ニュートリノ

1.1 ニュートリノとは

ニュートリノは 1930 年にパウリによって存在が提唱された素粒子であり、1956 年にライネス らによって発見された。特徴として電荷をもたない、質量が限りなく小さい、といったことが挙 げられる。ニュートリノに働く相互作用は弱い相互作用及び重力相互作用であるが、前述した特 徴からほとんど他の物質と反応せず透過してしまうため、ニュートリノの観測は非常に困難であ る。ニュートリノには3種類のフレーバーが存在し、電子ニュートリノ (ν_e)、ミューニュートリ ノ (ν_{μ})、タウニュートリノ (ν_{τ})と分類され、これらはレプトンである電子、ミュー粒子、タウ 粒子と対になっている。また、従来までニュートリノには質量がないと思われていたが、後述する ニュートリノ振動の発見により、今日では3種類の質量が存在することが分かっている。

1.2 ニュートリノ振動

あるフレーバーのニュートリノは、空間を飛行中に別のフレーバーのニュートリノへと変化する。 この現象をニュートリノ振動と呼び、1962年に提唱、定式化され、1998年に実際に観測された。 ニュートリノのフレーバーと質量の固有状態はそれぞれ3種類存在し、あるフレーバーの固有状 態 ν_f (f = e, μ, τ) は質量の固有状態 ν_i (i = 1, 2, 3) が混合した状態で表される。

$$|\nu_{\rm f}\rangle = \sum_{\rm i} U_{\rm f \, i} |\nu_{\rm i}\rangle \tag{1.1}$$

ここで U_f i はクォークにおける小林・益川行列に対応する混合行列であり、提唱者の名前をとって ポンテコルボ・牧・中川・坂田行列(PMNS 行列)と呼ばれる以下の行列である。

$$U_{\rm PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$
(1.2)

式(1.2)の c_{ij} 、 s_{ij} はそれぞれ混合角 θ_{12} , θ_{23} , θ_{13} を用いて、 $c_{ij} = \cos\theta_{ij}$ 、 $s_{ij} = \sin\theta_{ij}$ である。また、 δ は複素位相である。

ニュートリノ振動について簡単のため、*ν*_e と *ν*_μ の 2 世代の振動を考える。2 つのフレーバーの 固有状態は混合角 θ を用いて以下のように表せる。

$$|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle \tag{1.3}$$

$$|\nu_{\mu}\rangle = -\sin\theta|\nu_{1}\rangle + \cos\theta|\nu_{2}\rangle \tag{1.4}$$

また、ニュートリノが運動量 p を持つとするとニュートリノの質量は十分に小さいため、

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p}$$
 (1.5)

と表される。この時、それぞれの波動関数の発生してからの時間 *t* における時間発展は、単位系を プランク単位系とすると、

$$|\nu_e(t)\rangle = \cos\theta|\nu_1(0)\rangle \exp\left(-iE_1t\right) + \sin\theta|\nu_2(0)\rangle \exp\left(-iE_2t\right)$$
(1.6)

$$|\nu_{\mu}(t)\rangle = -\sin\theta|\nu_{1}(0)\rangle\exp\left(-iE_{1}t\right) + \cos\theta|\nu_{2}(0)\rangle\exp\left(-iE_{2}t\right)$$
(1.7)

となる。よって、時刻 t = 0 で発生した電子ニュートリノ ν_e が時刻 t でミューニュートリノ ν_μ に 変化する確率 $P(\nu_e \rightarrow \nu_\mu)$ は、

$$P(\nu_{e} \to \nu_{\mu}) = |\langle \nu_{\mu} | \nu_{e}(t) \rangle|^{2}$$

= $\frac{1}{2} \sin^{2} 2\theta \{1 - \cos(E_{1} - E_{2})t\}$
= $\frac{1}{2} \sin^{2} 2\theta \{1 - \cos\left(\frac{|m_{1}^{2} - m_{2}^{2}|}{2E}\right)t\}$
= $\frac{1}{2} \sin^{2} 2\theta \{1 - \cos\left(\frac{\Delta m^{2}}{2E}\right)t\}$ (1.8)

となる。また、 ν_e がそのままである確率 $P(\nu_e \rightarrow \nu_e)$ は、

$$P(\nu_e \to \nu_e) = 1 - P(\nu_e \to \nu_\mu)$$

= $1 - \frac{1}{2} \sin^2 2\theta \left\{ 1 - \cos\left(\frac{\Delta m^2}{2E}\right) t \right\}$ (1.9)

となる。式(1.8)、(1.9) より、ニュートリノのフレーバー間に混合があり、かつ質量が異なる固 有状態が存在するとき、すなわち、 $\theta \neq 0$ 、 $\Delta m^2 \neq 0$ の時、 $P(\nu_e \rightarrow \nu_\mu) \neq 0$ 、 $P(\nu_e \rightarrow \nu_e) \neq 1$ と なり、ニュートリノ振動が起こる。

第2章 T2K実験

2.1 T2K 実験

2.1.1 T2K 実験の概要

T2K (Tokai to Kamioka)実験は、前身である K2K (KEK to Kamioka)実験を踏まえ 2009 年 より開始された素粒子実験である。茨城県の東海村に位置する J-PARC から 295km 離れた岐阜県 飛騨市に位置するスーパーカミオカンデに向かってニュートリノビームを打ち込むことで、ニュー トリノ振動を観測、研究することを目的としている。T2K 実験ではニュートリノビームと反ニュー トリノビームを用いてニュートリノ振動と反ニュートリノ振動の違いを調べている。

図 2.1: T2K 実験の概略図 [1]

2.1.2 ニュートリノビーム

J-PARCによるニュートリノ生成部分は、LINAC(LINear ACcelerator)、RCS(Rapid Cycling Synchrotron)、MR(Main Ring)の3台で構成されている。LINAC で 400MeV の陽子ビームを 生成し、その後 RCS で 3GeV、MR で 30GeV まで加速する。加速された陽子ビームは炭素標的に 照射され、ハドロン反応によって主に π 中間子が生成される。このようにして生成された π 中間 子が式 (2.1)、(2.2)のように崩壊することでニュートリノが生成される。

$$\pi^+ \to \mu^+ + \nu_\mu \tag{2.1}$$

$$\pi^- \to \mu^- + \bar{\nu}_\mu \tag{2.2}$$

ここで、電磁ホーンの磁場の偏向によって収集する荷電パイオンの電荷を選択することで、ニュー トリノビームと反ニュートリノビームを選択することが出来る。

2.1.3 オフアクシス法

オフアクシス法とは、スーパーカミオカンデから 2.5° ずれた方向にニュートリノビームの中心 を向けることでピークの鋭いエネルギー分布のニュートリノビームを得ることが出来る方法であ る。2.1.2 で記したようにニュートリノビームは π 中間子の 2 体崩壊を用いて生成しているので、 ニュートリノのエネルギー *E_ν* は以下のように表される。

$$E_{\nu} = \frac{m_{\pi}^2 - m_{\mu}^2}{2\left(E_{\pi} - p_{\pi} \cos\theta_{\nu}\right)} \tag{2.3}$$

ここで、*m*_π、*E*_π、*p*_π はそれぞれ π 中間子の質量、エネルギー、運動量、*m*_μ はミューオンの質 量、*θ*_ν はニュートリノと π 中間子の崩壊角である。式(2.3)より崩壊角 *θ*_ν が大きくなると図 2.2 のようにエネルギー分布の幅が小さくなる。T2K 実験では、ニュートリノ振動確率が最も高くな るエネルギーにピークが現れるようにオフアクシス角が 2.5° に設定されている。

図 2.2: 各オフアクシス角における T2K ニュートリノビームのエネルギー分布 [2]

2.2 前置検出器

T2K 実験では、ニュートリノを J-PARC に設置されている前置検出器と岐阜県に設置された後 置検出器(スーパーカミオカンデ)で測定し、ニュートリノビームの成分を比較することでニュー トリノ振動を観測している。前置ニュートリノ検出器は INGRID 検出器と ND280 検出器の 2 種類 が存在し、陽子ビームが照射される炭素標的から 280m 下流に設置されている。

2.2.1 INGRID 検出器

INGRID 検出器は鉄とシンチレータを交互に挟んだ構造を1単位とし、それを14単位組み合わ せて構成されている。これらは鉛直方向に7個、水平方向に7個設置された十字型に組み立てられ ており、十字の中心部分にニュートリノビームが通るように設置されている。鉄とニュートリノの 反応によって生成された2次粒子をシンチレータで観測し、その飛跡などからニュートリノビーム の強度と方向を観測している。

図 2.3: INGRID 検出器の概略図

2.2.2 ND280 検出器

ND280 検出器はビーム軸から 2.5° ずれたスーパーカミオカンデと同じ方向に設置された検出器 で、ニュートリノ振動が起こる前のニュートリノのエネルギースペクトル及び流束(単位時間単位 面積に流れる量)を測定している。また、ニュートリノと標的原子核の間の反応断面積の測定も 行っている。ND280 検出器は、以下のモジュールにより構成されている。 • UA1 Magnet

検出器の全体を囲うように設置されている大型の電磁石であり、0.2Tの磁場をかけて荷電 粒子の飛跡を曲げることにより、各粒子の運動量及び電荷の正負を測定している。

• P0D (π^0 Detector)

鉛、ターゲットである水、シンチレーターのサンドイッチ構造となっており、π⁰ 生成反応 の測定を行っている。

• FGD (Fine Grained Detector)

ニュートリノの反応点近傍の飛跡の検出及び低エネルギー粒子のトラッキングを目的とし ており、棒状のシンチレータを鉛直方向と垂直方向に交互に並べた構造を持つ。

• TPC (Time Projection Chamber)

TPC は FDG を挟むように設置されており、ニュートリノ反応によって生成された荷電粒子の飛跡の曲がり具合から粒子の運動量及び電荷の正負の測定を、エネルギー損失から粒子の識別を行っている。

• ECAL (Electromagnetic CALorimeter)

ニュートリノ反応によって生成した電子及び γ 線の電磁シャワーをとらえ、そのエネルギー を測定する。UA1 Magnet 内側の最外層に設置されている。

• SMRD (Side Muon Range Detector)

UA1 Magnet の隙間に設置されている検出器であり、TPC に入射しなかった荷電粒子の 飛跡を測定し、エネルギーを再構成する。

図 2.4: ND280 検出器の概略図 [1]

2.3 後置検出器(スーパーカミオカンデ)

スーパーカミオカンデは岐阜県飛騨市神岡鉱山内の地下 1,000m に位置する世界最大の水チェレ ンコフ宇宙素粒子観測装置であり、T2K 実験においては後置検出器として利用されている。直径 39.3m、高さ 41.4m の円筒の形をしたタンクであり、内部にはおよそ5万トンの純水が満たされて いる。また、側面には約 11,000 本の光電子増倍管が取り付けられており、これによって水とニュー トリノが相互作用した際に生成される荷電粒子が放出するチェレンコフ光を観測することにより、 ニュートリノを観測している。

図 2.5: スーパーカミオカンデ内部の写真 [2]

また、スーパーカミオカンデは2層構造になっており、厚さ約2mの外水槽には外向きに光電子 増倍管が約1,800本取り付けられている。この光電子増倍管は、ニュートリノと宇宙線ミューオン を区別し、ノイズを除去するために利用されている。

2.4 SuperFGD

2.4.1 ND280 検出器の問題点

現在の ND280 検出器は、大角度(横方向)に散乱した荷電粒子に対し検出感度が低い、また 600 MeV/c 未満のエネルギーの荷電粒子に対して検出感度が低いといった欠点がある。これは ND280 検出器の構造上の問題である。これらの問題解決のための ND280 検出器のアップグレードとして、新たなニュートリノ検出器である SuperFGD 検出器、HA(High Angle)TPC、TOF(Time Of Flight counter)を設置することが決定し、建設が進められている。

2.4.2 Super FGD とは

SuperFGD (Super Fine Grained Detector)は T2K 実験の新型シンチレーション検出器であり、 1cm³のキューブ型のシンチレータが約 200 万個(184 × 56 × 192)使用される。各キューブには それぞれ 3 方向に円筒形の穴が互いに直角になるように開いている。この 200 万個のキューブに 3 方向から約 6 万本の波長変換ファイバが通される。ファイバの端には光検出器 MPPC (Multi-Pixel Photon Counter)が設置されていて、信号を読み出している。

Super FGD の利点として、読み出しが3方向であるため、大角度で散乱した荷電粒子に対して の検出感度が高いこと、低エネルギーの飛跡も高感度で検出可能であることが挙げられる。

2.4.3 構成要素

1cm³ シンチレータキューブ

SuperFGD では 1cm × 1cm × 1cm のシンチレータキューブが約 200 万個使用されてお り、材質はポリエチレンをベースに 1.5%の パラテルフェニル、0.01%の POPOP が添加さ れている。各面の中心部分には直径 1.5mm の穴が 3 方向にあけられており、波長変換ファイ バーで 3 方向から読み出しを行う。また、シンチレータの表面には反射材の層が形成されて いて、シンチレーション光の収集効率を高めるのに役立っている。

• 波長変換ファイバ

波長変換ファイバはシンチレータキューブに空いた穴の中に通され、放出されたシンチレー ション光を MPPC の感度波長範囲内の波長に変換する。SuperFGD では約6万本のファイ バが使用されている。

• MPPC

波長変換ファイバで変換したシンチレーション光を半導体型光検出器 MPPC で検出する。 MPPC に関しては第3章で詳しく述べる。

第3章 MPPC (Multi-Pixel Photon Counter)

3.1 MPPCとは

MPPC (Multi-Pixel Photon Counter) は半導体型光検出器の一種であり、光子が入射すること で電流が流れ光子の量に応じたパルス幅の信号を出力する。MPPC は低電圧動作、高増倍率、高 検出効率、高速応答、高分解能、磁場の影響を受けない、安価であるといった特徴があり、高性能 で手軽に使用できるため、高エネルギー物理だけでなく、医療、天文学といった分野への応用も期 待されている。

図 3.1: MPPC 素子 [3]

3.2 構造·動作原理

3.2.1 アバランシェフォトダイオード

アバランシェフォトダイオードは、アバランシェ増幅と呼ばれる現象を利用したフォトダイオー ドの一種であり、通常のフォトダイオードに比べて受光感度が高いという特徴がある。

まず初めにフォトダイオードに関して記す。フォトダイオードは光検出器の一つであり、一般的 なダイオードと同様に、P型半導体とN型半導体を合わせた PN 接合で構成される。PN 接合部 分の付近では、N型半導体内の電子の一部が P型半導体内の正孔と結合して電荷を打ち消しあい、 空乏層と呼ばれる領域が発生する。空乏層内では電子、正孔が無くなるため、N型半導体はプラ スに、P型半導体はマイナスに帯電して内部電界が発生する。この空乏層内に光が照射されると電 子-正孔対が生成されるが、内部電界によって電子はN型半導体側へ、正孔はP型半導体側へ移動 することで起電力が発生し、電流が流れる。

アバランシェフォトダイオードは基本的な構造は同じだが、P型半導体の層がP層、P⁺層、P⁻ 層の3層に分かれており、N層に最も近いP層では内部電界が通常のフォトダイオードに比べて大 きく、生成されたキャリアが加速されやすい。限界まで加速され、大きなエネルギーを持ったキャ リアが半導体結晶格子に衝突すると、新たな電子-正孔対が生成される。電子-正孔対の衝突によっ て新たな電子-正孔対が雪崩のように発生する様子からこの現象をアバランシェ増幅と呼び、アバ ランシェ増幅を利用したフォトダイオードをアバランシェフォトダイオードと呼ぶ。このように、 アバランシェフォトダイオードは1つの電子を指数関数的に増加させるため、微弱光、例えばシン グルフォトンであっても検出が可能となる。また、アバランシェフォトダイオードはある一定の大 きさ以上の逆バイアス電圧を印加することで動作し、アバランシェ増幅が開始される電圧を降伏電 圧と呼ぶ。このような動作モードをガイガーモードと呼び、ガイガーモードで電流を放出すること をガイガー放電と呼ぶ。

図 3.2: アバランシェフォトダイオードの概略図、電界強度 [4]

3.2.2 構造

MPPC はガイガーモードのアバランシェフォトダイオードとクエンチング抵抗を合わせて基本 単位(1ピクセル)として、それらを並列接続した構造を持っている。各ピクセルに光子が入射す ると、3.2.1 で記したとおりアバランシェ増幅が発生したのち、ガイガー放電が起こる。アバラン シェフォトダイオードは内部電界が保たれる間はガイガー放電を続けるため、次の光子を検出する ためにアバランシェフォトダイオードの動作電圧を下げる必要がある。クエンチング抵抗はガイ ガー放電が起こった際にアバランシェフォトダイオードの動作電圧を下げる役割を持っており、ク エンチング抵抗に電流が流れることで電圧降下を起こす。このため、MPPC の各ピクセルには回 復時間が存在し、ある光子を検出した後、一定時間内は次の光子が入射しても電流が流れないた め、検出することはできない。

図 3.3: MPPC の構造 [4]

各ピクセルごとのガイガー放電によって生成されるパルスの大きさは等しいので、複数の光子が 1度に MPPC に入射した場合、最終的に出力されるパルス幅は光子が入射したピクセルからのパ ルスの総和であり、入射した光子の数に比例する。したがって、パルスの電荷量を積分することに より、入射した光子の数を測定することができる。

図 3.4: MPPC のパルス信号

3.2.3 検出効率

MPPCの感度は検出効率(Photon Detection Efficiency)と呼ばれ、MPPCの量子効率(入射 光子に対して発生した電子-正孔対の割合)、開口率(MPPCの光検出可能部分の割合)、アバラン シェ確率(光子が入射したピクセルが励起する確率)の積から求められる。

3.3 MPPCの諸特性

3.3.1 降伏電圧

アバランシェ増幅が起こる最低電圧を降伏電圧と呼び、この大きさ以上の逆バイアス電圧を印加 することで MPPC は動作する。MPPC の降伏電圧には温度特性があり、一般的に温度が高くなる と降伏電圧は高くなる。これは温度が増加することで半導体結晶中の格子振動が激しくなり、アバ ランシェフォトダイオード内部で生成されたキャリアが十分に加速されないうちに結晶と衝突して しまう可能性が高くなることでアバランシェ増幅が起こりにくくなるからである。

3.3.2 ゲイン

MPPC のゲイン(増倍率)は信号の増倍率のことであり、ピクセルの基本単位の素子が1フォトンを検出した際に出力されたパルスの電荷量を、電気素量1.602×10⁻¹⁹Cで割った値と定義される。

ゲイン =
$$\frac{\text{1p.e. } \mathcal{O} \equiv \overline{\overrightarrow{\text{m}} \equiv (Q)}}{\overline{\mathbb{m}} \overline{\text{s}} \overline{\text{s}} \overline{\mathbb{m}} (e)}$$
 (3.1)

1フォトンのパルスの電荷量は MPPC にかける印加電圧 $V_{\rm R}$ の大きさと正の相関を持つ。降伏 電圧を $V_{\rm BR}$ 、1ピクセルの容量を C とすると、1フォトンのパルスの電荷量 Q は式(3.2)のよう になる。

$$Q = C \times (V_{\rm R} - V_{\rm BR}) \tag{3.2}$$

よって式(3.1)、(3.2)より、MPPCのゲインは印加電圧に対し線形に増加するので、降伏電圧 と印加電圧の差(オーバー電圧 Vover)を大きくすることによって高いゲインを得ることが出来る。 また、ゲインには温度特性があり、印加電圧の大きさが同じ場合、温度が上昇するとゲインは低 下する。これは、温度が上昇すると 3.3.1 で記したように降伏電圧が高くなるからである。

3.3.3 ダークレート

MPPCには、電圧を印加していなくても流れる電流(ダークカレント)が存在し、ノイズの原因 となっている。MPPCにおける暗電流は、表面の汚れや錆などにより通電してしまうことによる 表面リーク電流、キャリアが再結合した際に流れる再結合電流、熱的に生じたキャリアによるバル ク電流があるが、このうちバルク電流によるパルスはアバランシェ増幅によって増倍されるため、 観測のノイズとなる。このノイズをダークパルスと呼び、1秒当たりのダークパルスの数をダーク レートと呼ぶ。本研究ではダークレートの定義を浜松ホトニクス社に従い、暗状態で 0.5p.e. の閾 値を超えた信号をダークパルスとして、式(3.3)のようにダークレートを測定した。

3.3.4 クロストーク

MPPC のあるピクセルでガイガー放電が起こった際、2 次的な光子が放出されることがある。この2 次光子を周辺のピクセルが検出し、あたかも光子がやってきたかのように振る舞う現象をクロストークと呼ぶ。これらの2 つのパルスはほぼ同時に出力されるので、1p.e. のイベントが 2p.e. 以上であるかのように出力されてしまう。このように、クロストークは見かけの光子量を増加させてしまい、本来の光子量の分布のずれの原因になってしまうため、なるべく抑えるのが望ましい。

本研究では、クロストークの発生確率 P_{Cross talk} を浜松ホトニクス社の定義に従い、式(3.4)のように設定した。

$$P_{\text{Cross talk}} = \frac{1.5\text{p.e. 以上のイベント数}}{0.5\text{p.e. 以上のイベント数}}$$
(3.4)

ここで、0.5p.e. 及び 1.5p.e. 以上のイベント数はダークレートを求める際に測定した暗状態の積分 電荷量の分布を用いる。

3.3.5 アフターパルス

MPPC のあるピクセルで放電が起こった際に電子はアバランシェ増幅されるが、半導体結晶内 に存在する結晶欠陥に電子がトラップされ、ある時間間隔を置いてその電子が放出されることが ある。このとき、放出された電子は増幅され、パルスとして放出される。このような過程で、光子 によるパルスの後にある時間間隔を置いて放出されるパルスのことをアフターパルスという。アフ ターパルスによる信号は入射光子によるものと発生時間を除いて区別がつかないため、クロストー クと同様に見かけの光子量を増加させてしまう。

図 3.5: MPPC のアフターパルス信号

3.3.6 応答線形性

MPPCの1つのピクセルに同時に複数の光子が入射したとしても、生成されるパルス幅は1光 子の時のものと変わらない。なので、MPPCに入射する光子量を増加させていくと、1つのピクセ ルに同時に光子が入射する確率が高くなり、入射光子量に対する検出光子数の線形性が低下する。 理論的には、検出光子数は MPPC の最大ピクセル数に収束する。検出光子数 N_{det} と入射光子数 N_{in} には以下の関係がある。

$$N_{\rm det} = N_{\rm pix} \left(1 - \exp\left(\frac{-\epsilon \times N_{\rm in}}{N_{\rm pix}}\right)\right) \tag{3.5}$$

ここで、 N_{pix} は MPPC のピクセル数、 ϵ は検出効率である。以下に今回測定した MPPC の理想 応答曲線を示す。各パラメータの値はデータシート [3] より、 $N_{\text{pix}} = 2668, \epsilon = 25\%$ とした。

図 3.6: 理想応答曲線

第4章 MPPCの諸特性の測定

4.1 本研究の目的

第2章で記したとおり、SuperFGD ではニュートリノ反応によって生じた光を半導体型光検出 器 MPPC によって検出している。本研究では、SuperFGD に使用する予定である MPPC に関し て諸特性の測定を行った。

4.2 測定方法

4.2.1 測定機器

 $\bullet~\mathrm{MPPC}$

今回の測定で用いた MPPC は、図 4.1 に示した浜松ホトニクス製の表面実装型の MPPC (S13360-1325PE) である。図 4.2 のような読み出し回路を作成し、MPPC に逆バイアス電 圧を印加してその信号を読み取った。

図 4.1: 本研究で使用した表面実装型 MPPC (S13360-1325PE)

図 4.2: MPPC 読み出し回路の回路図と作成した回路

表 4.1: MPPC (S13360-1325PE) の各データ (25 ℃、印加電圧=降伏電圧+5V) [3]

ピクセル数	2668
有効受光面サイズ(mm)	1.3 imes 1.3
ピクセルピッチ(μm)	25
開口率(%)	47
検出効率 PDE(%)	25
端子間容量(pF)	60
ダークカウント(kHz)	平均 70 最大 210
増倍率	7.0×10^{5}
降伏電圧(V)	53 ± 5
クロストーク確率(%)	1
推奨動作電圧 (V)	降伏電圧+5V

後述する電荷積分型読み出し回路は負電圧の入力が必要なため、負の信号が出力されるよう に図 4.2 に示した読み出し回路を作成した。

• 恒温槽

MPPC は温度依存性を持つので、MPPC 周辺の温度を一定にするために恒温槽(フクシ マガリレイ製、FMU-2041)を用いて MPPC 周辺の温度を一定に保った。また、外部からの 光子の侵入を防ぐために、恒温槽ののぞき窓及び恒温槽自体を暗幕で覆って使用した。

図 4.3: 使用した恒温槽

• 電荷積分型読み出し回路(CAMAC ADC C009)

MPPC の信号は、CAMAC の 16ch 電荷積分型 ADC の C009(豊伸電子)を用いて計測 した。C009 はゲート端子に信号が入力されている間、0~-5V の信号を積分し、12 ビット のデジタル値に変換する。C009 で MPPC の信号を測定した結果を図 4.4 に示す。図 4.4 は 横軸に積分したデジタル値、縦軸にイベント数をとったヒストグラムであり、ペデスタル、 1p.e.、2p.e.... とピークが出現する。ピーク位置はガウシアンでフィッティングして算出した。

図 4.4: 電荷積分型読み出し回路 C009 による MPPC 信号の測定結果

• LED

LED は一般的な白色発光ダイオード(Φ 4.8mm)を用いた。

• MPPC 電源

ケースレーインスツルメンツ社製「2400 シリーズ・グラフィカル・ソースメータ」を、MPPC に逆バイアス電圧を印加するために用いた。1/1000Vの精度で電圧値を設定することが可能。

• パルスジェネレータ (P.G)

LED の発光のタイミング及び電荷積分型読み出し回路へのゲート信号を生成するための トリガーとなる信号は、テクトロニクス社製のファンクション・ジェネレータ(AFG1000) を使用した。

● 光電子増倍管(PMT)

光電子増倍管は入光窓から光子が入射すると光電効果によって光電子が生成され、それを ダイノードと呼ばれる二次電子増倍電極で増倍する光検出器である。本研究では応答線形性 を測定する際に LED からの光子数を測定するために、浜松ホトニクス社製の光電子増倍管 (R329-02)を用いた。

MPPC の信号を読み取るために使用した NIM モジュールは以下の通りである。

- Octal PM Amplifier (0353t)
 MPPC の信号を増幅させるためのアンプ。
- QUAD Discriminator(KN240)
 設定した閾値以上の電圧が入力されたとき、一定の大きさの NIM 信号を出力する。
- Dual Gate Generator (G.G) (KN1501)

ある NIM 信号が入力されたとき、設定した長さの NIM 信号に変換する。

本研究のデータ収集系の概略を図 4.5 示す。

図 4.5: 本研究のデータ収集系の概略図

電荷積分型読み出し回路に入った MPPC の信号とゲート信号のタイミング調整は G.G. で行った。

4.2.2 各特性の測定方法

本研究ではデータシートの条件である温度 25 ℃、オーバー電圧(印加電圧と降伏電圧の差)5V の MPPC の諸特性を測定した。また、諸特性の温度及び印加電圧依存性についても測定した。

ゲイン

ゲインは1光子を観測した際に出力されるパルスを電荷積分することで算出することが出来る。 今回電荷積分に用いた C009 は、1000pC を 12 ビットで積分した値を出力するため、MPPC のゲ インは式 (4.1) のように求められる。

ゲイン =
$$\frac{2 \operatorname{OO}\mathcal{C} - \rho \operatorname{ll} \operatorname{O} \mathcal{F} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} + \frac{1.0 \times 10^{-9} (\mathrm{C})}{2^{12}}}{1.602 \times 10^{-19} (\mathrm{C}) \times \mathcal{F} \mathcal{I} \mathcal{I} \mathcal{O} \operatorname{Ges}}$$
(4.1)

2 つのピーク間のデジタル値はペデスタル~3p.e. までのピーク位置をガウシアンでフィッティング し、ペデスタルと 2p.e. 及び 1p.e. と 3p.e. の各ピーク間の値を計算し、それらの平均を 2 で割った 値を 1 光子の電荷量とした。

降伏電圧

MPPC のゲインが0となる電圧が降伏電圧である。ピークの間隔の大きさは出力される電荷量 に比例するため、式(3.2)より印加電圧の大きさに対するゲインの大きさは1次に変化すること から、印加電圧を変化させながらゲインを測定し、その測定結果を1次関数でフィッティングする ことでゲインが0となる降伏電圧を計算した。

ダークレート

ダークレートは 3.3.3 で記したとおり熱によって発生したダークカレントを起因とするノイズの 発生頻度である。そのため、暗状態でランダムなタイミングでトリガーを発生させてデータ収集を 行った。その測定データを用いて電荷積分のヒストグラムを作成した後、ガウシアンフィッティン グで各ピーク位置を計算し、式(3.3) に従いダークレートを計算した。0.5p.e. の位置は、ヒスト グラムよりペデスタルと 1p.e. のピーク位置から求めた。測定時間は、ゲート電圧の長さが 170ns、 データのイベント数が 100,000 イベントであったため、170 (ns) × 100,000 = 1.70 × 10⁻² (sec) であった。

ダークレート (Hz) =
$$\frac{0.5 \text{p.e. 以上のイベント数}}{1.70 \times 10^{-2} (\text{sec})}$$
 (4.2)

クロストーク・アフターパルス

クロストークとアフターパルスは、3.3.4 及び 3.3.5 で記したとおり見かけの光子量を増加させる 原因となっているが、それらをヒストグラムから区別して測定することは困難である。例えば、あ るゲート信号中に測定された光子数が2光子分であったとしても、1光子分のダークパルスからク ロストークが発生したのかアフターパルスが発生したのか、またダークパルスが2パルス発生した のかを区別することは出来ない。したがって本研究ではクロストークに関して、アフターパルスを 含めたクロストーク確率(以降、クロス・アフター率 *P*_{CrossAfter} と呼ぶ)を測定した。

クロス・アフター率の求め方について記述する。まず、ダークレートと同様の方法で100,000 イ ベントを測定し、そこから1.5p.e. 及び0.5p.e. 以上のイベント数を求める。ここで、ダークパルス が1パルス分ずつであれば式(3.4)よりクロス・アフター率を求めることが出来るが、実際は本 当にダークパルスを2パルス検出したイベントも存在し、式(3.4)ではそれをクロストーク、ま たはアフターパルスが発生したイベントであると誤って数えてしまう。そこでペデスタルのイベン ト数にはノイズの影響が乗らないことからダークパルスのイベント数はポアソン分布に従うと仮定 し、ペデスタルのイベント数とポアソン分布から計算した2p.e.のイベント数及び測定した1.5p.e. 以上のイベント数の差を0.5p.e. 以上のイベント数で割ることでクロス・アフター率を計算した。

P_{α} is $-$	1.5p.e. 以上のイベント数 – ポアソン分布における 2p.e. 以上のイベント数	(13)
I CrossAfter —		(4.0)

データシート [3] によると、"クロストーク確率は動作温度範囲でほとんど温度依存性がなく、また、印加電圧が大きいほど、クロストークの発生頻度は高くなる"と記されている。したがって、 本研究ではクロス・アフター率に関して温度を 25 ℃で一定にし、印加電圧の大きさを変化させた ときのクロス・アフター率の変化に関して調べた。

アフターパルスについてはクロストークの確率がオーバー電圧が等しいときは変化しないことを 利用して、オーバー電圧の大きさを+5Vに固定し、クロス・アフター率を測定した。その後、デー タシートに記載されたクロストーク確率を差し引き、アフターパルスの確率を求めた。

応答線形性

応答線形性は基本セットアップに加え、光電子増倍管(PMT)を MPPC と等しい距離の位置に 設置し、大光量域の積分値を測定した。PMT の光入射窓には MPPC の受光面と等しい大きさで ある 1.3mm × 1.3mm の穴をあけた暗幕を被せ、入射する光子の数が等しくなるように調節した。

4.3 測定結果・考察

4.3.1 降伏電圧

MPPC の降伏電圧の温度依存性を測定するために、5 ℃、15 ℃、25 ℃における降伏電圧を測定 した。それぞれ 58~62V、57~61V、56~60V まで 1V 刻みで測定した。まず初めに、各温度にお ける印加電圧の絶対値と隣り合ったピークの間隔(以降、1p.e.ADC と表現する)をプロットした グラフを図 4.6、4.7、4.8 に、それらの図から求めた降伏電圧をまとめた表を表 4.2 に示す。(以降 のグラフの印加電圧の値は絶対値である。)

図 4.8: 25 ℃のグラフ

表 4.2: 各温度における降伏電圧

温度 (℃)	5	15	25
降伏電圧 (V)	50.55 ± 0.07	51.08 ± 0.02	51.66 ± 0.06

続いて、温度別に降伏電圧をプロットしたグラフを図 4.9 に、そこから求めた降伏電圧の温度係

数(温度に対する降伏電圧の変化の割合)を表 4.3 に示す。

図 4.9: 温度別の降伏電圧

表 4.3: 25 ℃における降伏電圧と温度係数

	降伏電圧(V)(25 ℃)	温度係数(mV/K)	
データシートの値 53±5		54	
測定値	51.66 ± 0.06	55	

図 4.6、4.7、4.8 より、印加電圧に対する 1p.e.ADC はほぼ線形に増加しており、算出された降 伏電圧もほぼ真値に近い値であると考えられる。また、図 4.9 から降伏電圧の値も温度に対して線 形に増加しており、降伏電圧と温度係数の値はデータシートの値を再現した。これらの結果より、 SuperFGD の動作温度である 20 ℃においては降伏電圧の値は約 51.39V であることが分かった。

4.3.2 ゲイン

本研究では、温度と印加電圧に対するゲインの変化を測定した。温度に対する変化に関しては印 加電圧の大きさを-58Vに固定し、0~30 ℃まで 10 ℃刻みで測定した。また、印加電圧に対する変 化に関しては温度を 25 ℃に固定し、印加電圧を-56.66~-60.66V まで 1V 刻みで変化させ測定した。

まず印加電圧を-58V に固定した時の、各温度における MPPC の積分電荷量の分布を図 4.10 から図 4.13 に示す。また各温度での 1p.e.ADC の値とゲインを表 4.4 にまとめた。最後に印加電圧 を-58V に固定した時の温度とゲインの関係を図 4.14 に示す。

図 4.12: 20 °Cにおける積分電荷量の分布 (印加電圧-58V)

tin 3500

3000F

2500

1500

1000

500

0

MPPC Counting at 30°C Entries 100000 Mean 123.6 Std Dev 37.67 1000 60 80 100 120 140 160 180 200 220 220 40 ADC number

図 4.13: 30 °Cにおける積分電荷量の分布 (印加電圧-58V)

表 4.4: 印加電圧-58V のときの温度別の 1p.e.ADC の値

温度(℃)	0	10	20	30
1p.e.ADC の値	30.01 ± 0.06	27.67 ± 0.09	26.02 ± 0.07	24.38 ± 0.07
ゲイン	1.14×10^{6}	1.05×10^{6}	$9.95 imes 10^5$	9.32×10^{5}

図 4.14: MPPC への印加電圧が-58V のときの温度別のゲイン

温度に対する MPPC のゲインの大きさは図 4.14 より、概ね線形に低下した。4.3.1 より、MPPC の降伏電圧は温度に対して線形に増加したため、式(3.1)、(3.2) よりゲインも線形に低下したと 考えられる。また、図 4.14 においてグラフから誤差を超えてずれているプロット点が存在した(10 ℃の部分等)が、この原因としては恒温槽の温度のムラ及びガウシアンフィッティングの誤差が考 えられる。

続いて、温度を 25 ℃に固定した時の MPPC の積分電荷量の分布を図 4.15 から図 4.19 に示す。 また印加電圧の大きさ毎の 1p.e.ADC の値とゲインを表 4.5 にまとめた。最後に、温度を 25 ℃に 固定した時の印加電圧とゲインの関係を図 4.20 に示す。

図 4.15: -56.66V における積分電荷量の分布 (温度 25 ℃)

図 4.16: -57.66V における積分電荷量の分布 (温度 25 ℃)

図 4.17: -58.66V における積分電荷量の分布 (温度 25 ℃)

図 4.18: -59.66V における積分電荷量の分布 (温度 25 ℃)

表 4.5: 温度が 25 ℃のときの印加電圧別の 1p.e.ADC の値、ゲイン

印加電圧の大きさ(V)	56.66	57.66	58.66	59.66	60.66
1p.e.ADC の値	19.14 ± 0.10	23.08 ± 0.11	26.85 ± 0.13	30.88 ± 0.16	34.70 ± 0.18
ゲイン	7.32×10^5	$8.83 imes 10^5$	1.02×10^{6}	1.18×10^{6}	1.32×10^{6}

図 4.20: 25 ℃における印加電圧別のゲイン

また、データシートと同条件の 25 ℃、印加電圧=降伏電圧+5V(-56.66V)におけるゲインは 表 4.6 のようになった。

表 4.6: 25 ℃、オーバー電圧 5V におけるゲイン

	1p.e.ADC	ゲイン
測定値	19.14 ± 0.10	7.32×10^5
データシートの値	-	$7.0 imes 10^5$

図 4.20 より、印加電圧の大きさに対する MPPC のゲインの大きさは線形に増加した。また表 4.6 より、データシートのゲインの値は 7.0 × 10⁵ である一方、同条件でのゲインの測定値 7.32 × 10⁵ であり、恒温槽の温度の誤差等を考慮するとデータシートの値を再現した。SuperFGD の動作温度 の 20 ℃でのゲインだが、ゲインの大きさはオーバー電圧の大きさに依存するので、測定した降伏 電圧の値及びゲインの値から SuperFGD で要求されるゲインの大きさに調節することが出来る。

4.3.3 ダークレート

ダークレートに関しては、印加電圧を一定にしたときの温度依存性及び温度を一定にしたとき の印加電圧依存性を測定した。温度依存性に関しては、印加電圧を-60V に固定して-10~30 ℃ま で変化させながら測定した。印加電圧特性に関しては温度を 25 ℃に固定し、降伏電圧+5V であ る-56.66V と-57~-60V まで 1V 刻みの印加電圧で測定を行った。

初めに、印加電圧-60Vの時の各温度における積分電荷量の分布を図 4.21 から図 4.25 に示す。また各温度のダークレートを表 4.7 にまとめた。また、印加電圧を-60V に固定した時の温度とダークレートの関係を図 4.26 に示す。

図 4.21: -10 ℃、暗状態の積分電荷量の分布 (印加電圧-60V)

MPPC Counting at 20°C

図 4.23: 10 ℃、暗状態の積分電荷量の分布 (印加電圧-60V)

図 4.24: 20 ℃、暗状態の積分電荷量の分布 (印加電圧-60V)

図 4.25: 30 ℃、暗状態の積分電荷量の分布 (印加電圧-60V)

温度(℃)	-10	0	10	20	30
0.5p.e. 以上のイベント数	204	436	875	1871	2924
ダークレート(kHz)	12.0	25.6	51.4	110	172

表 4.7: 印加電圧-60V のときの温度別のダークレート

図 4.26: MPPC への印加電圧が-60V のときのダークレート(左図は線形軸、右図は対数軸)

3.3.3 において記したとおり、暗状態におけるノイズの原因は熱励起によって発生した電子-正孔 対である。実際、表 4.7 及び図 4.26 から温度が高いほどダークレートが高くなっていることが分 かる。また、高温部分では低温部分と比べ、温度に対するダークレートの変化量が大きくなった。 続いて、温度を 25 ℃に固定した時の暗状態の MPPC の積分電荷量の分布を図 4.27 から図 4.31 に示した。また印加電圧の大きさ毎のダークレートを表 4.8 にまとめた。最後に、温度を 25 ℃に

図 4.29: -58V、暗状態の積分電荷量の分布 (温度 25 °C)

図 4.30: -59V、暗状態の積分電荷量の分布 (温度 25 ℃)

図 4.31: -60V、暗状態の積分電荷量の分布 (温度 25 ℃)

表 4.8: 温度 25 ℃のときの印加電圧別のダークレート

逆電圧 (V)	-56.66	-57	-58	-59	-60
0.5p.e. 以上のイベント数	1383	1608	1728	2121	2388
ダークレート(kHz)	80.4	93.5	100	123	139

図 4.32: 25 ℃におけるダークレートの印加電圧依存性

図 4.32 から温度依存性と同様に、印加電圧の大きさが大きくなるほどダークレートの値は増加 した。これは、印加電圧が大きくなることで半導体内部の電界が大きくなり、熱励起により発生し た電子がアバランシェ増幅が起こる確率が高まったためであると考えられる。また、MPPCの降伏 電圧の測定結果(4.3.1を参照)は、温度が高くなるほど降伏電圧の絶対値は増加する、というも のであった。よって印加電圧の大きさが一定の場合、温度が高くなるほどオーバー電圧は減少する にもかかわらず、図 4.26 では温度が高くなるほどダークレートも大きくなった。したがってダーク レートの発生確率に対する影響は、印加電圧の大小に比べ温度の高低の方が大きいと考えられる。 続いて、データシートとの値を比較する。25 ℃、オーバー電圧 5V(-56.66V)におけるダーク レートの大きさは表 4.8 より 80.4kHz であった。一方、データシートの同条件でのダークレートの 大きさは平均 70kHz、最大 210kHz である。よって測定された値はデータシートの値を再現した。

4.3.4 クロストーク&アフターパルス

温度が 25 ℃での暗状態での測定結果である図 4.27~4.31 からクロス・アフター率を求めた。印 加電圧毎の 1.5p.e. 以上と 0.5p.e. 以上のイベント数、ペデスタルからポアソン分布を用いて求めた 2p.e. 以上のダークパルスのイベント数及び上記の値から計算したクロス・アフター率を表 4.9 にま とめた。また、温度を 25 ℃に固定した時の印加電圧とクロス・アフター率の関係を図 4.33 に示す。

印加電圧(V)	56.66	57	58	59	60
0.5p.e. 以上のイベント数	1383	1608	1728	2121	2388
1.5p.e. 以上のイベント数	51	86	122	254	304
2p.e. 以上のダークパルスイベント数	9	13	15	23	29
クロス・アフター率(%)	3.04	4.54	6.19	8.53	11.5

表 4.9: 25 ℃における印加電圧別のクロス・アフター率に関する各データ

図 4.33: 25 ℃におけるクロス・アフター率の印加電圧依存性

図 4.33 よりクロス・アフター率は印加電圧の大きさに対してほぼ線形に増加した。また、デー タシートの条件での測定値は 3.04%であった一方、データシートに記載されたクロストークの確率 は 1%であり、およそ 3 倍の大きさとなった。今回測定したクロストークの値はアフターパルスの 値を含んでいるため、このような結果になったと考えられる。よって、この結果から予測されるア フターパルスの確率は約 2%となった。

4.3.5 オーバー電圧を固定したときのダークレート、アフターパルスの温度依 存性

4.3.1 で測定された結果をもとに、オーバー電圧を 5V に固定した時の 5 ℃、15 ℃、25 ℃における暗状態の MPPC の信号を測定し、各温度におけるダークレート及びアフターパルスの確率を測定した。各温度の 0.5p.e. 以上と 1.5p.e. 以上のイベント数、ペデスタルから求めた 2p.e. 以上のダークパルスのイベント数、ダークレート、クロス・アフター率及びアフターパルスの確率を表 4.10 にまとめた。また、温度とダークレートの関係を図 4.34 に、温度とアフターパルスの確率の関係を図 4.35 に示す。アフターパルスの確率は、測定したクロス・アフター率からデータシートに記載されたクロストークの確率を差し引いて求めた。

温度 (℃)	5	15	25
0.5p.e. 以上のイベント数	312	652	1060
1.5p.e. 以上のイベント数	6	16	35
2p.e. 以上のダークパルスイベント数	1	2	6
ダークレート (kHz)	18.4	38.4	62.4
クロス・アフター率(%)	1.60	2.14	2.73
クロストークの確率(%)(データシートの値)	1		
アフターパルスの確率(%)	0.60	1.14	1.73

表 4.10: 温度別のクロス・アフター率に関する各データ

図 4.35: 各温度におけるアフターパルスの確率 (オーバー電圧 5V)

図 4.34 よりオーバー電圧の大きさを固定した時のダークレートは温度に対して線形に増加した。 また 4.2.2 で記した通りオーバー電圧の大きさを固定するとクロストークの確率が一定に保たれる ならば、図 4.35 の結果よりアフターパルスの確率は温度に対して線形に増加した。

また、オーバー電圧が 5V のときの SuperFGD の稼働温度である 20 ℃におけるダークレート及 びアフターパルスの確率は、図 4.34、4.35 より 50.6kHz、1.44%となった。

4.3.6 応答線形性

本研究では温度を 20 ℃に固定し、MPPC の応答線形性を測定した。この測定では MPPC の印 加電圧を-56.39V とした。PMT の電荷積分値と MPPC の光子数の関係を図 4.36 に示す。

図 4.36: PMT の積分値に対する MPPC の検出光子数(20 ℃、MPPC の印加電圧は-56.39V)

図 4.36 を見ると MPPC の検出光子数は入射光子数(PMT の積分値)に対し、600 個まではほ ぼ線形に増加したが、それを境に線形性が落ち始め、最終的には検出光子数と入射光子数の間に大 きな差が開いた。よって、10³ オーダーの大光量域では MPPC は光子の検出率が落ちることが分 かった。

第5章 結論

本研究では T2K 実験の新型前置ニュートリノ検出器 SuperFGD に使用する半導体型光検出器 MPPC (S13360-1325PE 浜松ホトニクス) に関して、諸特性の値及び温度、印加電圧依存性を測 定した。温度は恒温槽を用いてコントロールした。測定の結果 MPPC はデータシートの値を再現 した。また、各特性の温度、印加電圧依存性に関するデータを得ることが出来た。温度依存性に関 しては、温度を下げることでダークレートやクロストーク、アフターパルスといったノイズレート を抑えられることが分かった。印加電圧依存性に関しては、印加電圧を大きくするほど MPPC の ゲインを大きくすることが出来るが、ダークレート、クロストーク、アフターパルスのノイズレー トも高くなってしまうので、適切な大きさの電圧を印加することが求められる。

また、SuperFGD の動作環境温度 20 ℃における特性であるが、降伏電圧の大きさは約 51.39V で あった。よって、SuperFGD の目標ゲイン 7.0 × 10⁵ で動作させるには 56.39V 以上の大きさの電圧 を印加するとよい。また、オーバー電圧が 5V のときのダークレートの値は 50.6kHz、クロストー クの確率は 1%、アフターパルスの確率は 1.44%となった。以上の結果より、今回測定した MPPC 「S13360-1325PE」は、SuperFGD の要求されている性能を満たすことが分かった。

謝辞

今年度は新型コロナウイルス感染症が流行し、生活様式やスケジュールが従来と大きく異なる1 年となりましたが、様々な方のご支援を頂きながら無事に研究を進めることが出来ました。ここに 感謝の意を表します。

特に指導教員の南野准教授にはお忙しい中、研究に関するご指導を頂いたことはもちろん、ト ラブルや悩み事があった際に相談に乗っていただいたり、測定機器の手配をしていただいたりと、 様々な面で大変お世話になりました。

また、同研究室のメンバーの皆様とはゼミやミーティングを通じて互いに知見を広めあったり、 研究に関するお話を聞かせていただいたりとオンライン中心の生活ではありましたが、有意義な1 年を過ごすことが出来ました。ありがとうございました。

最後に、生活様式の大きな変化によってストレスを抱えていた自分を心的、経済的に支えてくれ た家族の皆様にも感謝いたします。

関連図書

- [1] T2K 実験公式ホームページ https://t2k-experiment.org/ja/t2k/
- [2] スーパーカミオカンデ公式ホームページ http://www-sk.icrr.u-tokyo.ac.jp/sk/detector/index.html
- [3] 浜松ホトニクス S13360-1325PE データシート
- [4] 浜松ホトニクス MPPC ハンドブック https://www.hamamatsu.com/resources/pdf/ssd/03_handbook.pdf
- [5] 栗林総一郎 (2020、京都大学、修士論文)「T2K 実験における新型ニュートリノ検出器 Super FGD のための研究開発」